粒子・もつれ・人間の意思決定

内 田 智 士

はじめに

本稿では、物理学によって明かされている、 物質の根源的な性質について、 最近の実験的研究を確認しながら

見ていきたい。

続的に移動している。この場合、物質同士が比較的近くにいれば、何らかの信号(空気の振動や光という電磁波) を介して影響を与え合いうる。しかしそのようなものを介した情報伝達がなければ、影響のしようがない。これ 物質に対する常識的なイメージは、 次のようなものだろう。つまり、 物質は空間の中に点在し、 時間と共に連

が日常的な世界観ではないだろうか。

ッセンスを見ていきたいと思う。特に本稿で焦点を当てたいのは、次の二つである。一つは、物理学の研究から、(1) ている範囲で紹介していきたい。物理理論と実験の内容について、正確な形で述べることはできないが、そのエ ところが、物理学のもたらす世界観は、これらとは少し違うようである。本稿では、その一端を筆者の理解し

常識とは反する「不思議な」 紹介したい。 ための枠組みである「量子論」が、人間の意思決定を調べるために使用されている(使用されうる)点について では分からないことや謎が多くあることである。また本稿では最後に補遺として、 現象が観測されていること。もう一つは、 物質の振る舞いについて、 物質の不思議な性質を調べる 根本的

空間を隔てた相関現象

トンネル効果

るが、 は紹介したい。 えて見ていきたいのであるが、その前に物理学で知られている不思議な現象の例として「トンネル効果」を先ず 本稿では、 日常的な感覚としては不思議な現象であるので、ここで述べておきたい。 物質同士の相互影響についてのある種、 この現象自体は、 多くの物理学の教科書に記載されており、 不思議な現象である「もつれ」について、 物理学徒にとっては常識なのではあ 実験の結果を交

移動できてしまうのである。 どの勢いがない限りは、 ンネル効果とは要するに、 向こう側に移動することはできないと思われる。 物質が「高い壁」をすり抜ける現象である。 しかし実際には物理実験の設定次第で、 常識的には物質は壁を乗り越

しかもこの事実は、例えば電子機器で必要となる半導体の設計において、既に以前から使われている。 このようなことは、常識では 「ありえない」と思ってしまうものであるが、 それはれっきとした事実である。

また私たちの体の中でも、 この現象が重要な役割を果たしている。 例えば、 体内における各種の酵素が働くた